K*: An Instance-based Learner Using an Entropic Distance Measure
نویسندگان
چکیده
The use of entropy as a distance measure has several benefits. Amongst other things it provides a consistent approach to handling of symbolic attributes, real valued attributes and missing values. The approach of taking all possible transformation paths is discussed. We describe K*, an instance-based learner which uses such a measure, and results are presented which compare favourably with several machine learning algorithms.
منابع مشابه
IRDDS: Instance reduction based on Distance-based decision surface
In instance-based learning, a training set is given to a classifier for classifying new instances. In practice, not all information in the training set is useful for classifiers. Therefore, it is convenient to discard irrelevant instances from the training set. This process is known as instance reduction, which is an important task for classifiers since through this process the time for classif...
متن کاملImproving Chernoff criterion for classification by using the filled function
Linear discriminant analysis is a well-known matrix-based dimensionality reduction method. It is a supervised feature extraction method used in two-class classification problems. However, it is incapable of dealing with data in which classes have unequal covariance matrices. Taking this issue, the Chernoff distance is an appropriate criterion to measure distances between distributions. In the p...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملe-Learning Theories with Emphasis on Independence Theory
Introduction: The basis of distance learning rests on the independence of the learner. The independent learning-teaching process is an educational system in which each learner is independent and separated from their teacher by time and place. Hence the present study seeks to examine E-learning Theories in general, but focuses on Independence Theory. Methods: The present study was conducte...
متن کاملThe binomial-neighbour instance-based learner on a multiclass performance measure scheme
This paper presents a novel instance-based learning methodology the Binomial-Neighbour (B-N) algorithm. Unlike to other k-Nearest Neighbour algorithms, B-N employs binomial search through vectors of statistical features and distance primitives. The binomial combinations derived from the search with best classification accuracy are distinct primitives which characterise a pattern. The statistica...
متن کامل